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Abstract

Propagation of plane harmonic waves is studied in anisotropic elastic medium. Anisotropy is of general type, i.e., no

symmetry enforced and no rotation of elastic tensor. The propagation is not restricted to a fixed plane but along a general

direction in three-dimensional space. A new procedure is presented to study the reflection in anisotropic media. Phase

direction of incident wave is calculated from its ray direction. For this incident phase direction, the Snell’s law is used to

calculate the phase direction of each of the homogeneous reflected waves, This identifies a critical angle of incidence for the

reflected wave such that, for incidence beyond this angle, this reflected wave becomes inhomogeneous. Group (energy)

velocities and ray directions of the homogeneous quasi-waves reflected at the free surface are calculated analytically and

without using energy flux. An energy matrix is defined to explain the energy share of different reflected waves and

interaction energy. The incidence of the quasi-waves is considered along a given (arbitrary) ray direction. The numerical

results compute the group velocities and ray directions of reflected waves for the numerical model of Dolomite crystalline

rock. The partition of incident energy among the homogeneous reflected waves is also calculated. The energies reflected as

different homogeneous waves vary with the ray direction of the incident wave. These variations are plotted and discussed

for the numerical model.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Elastic anisotropy is a widespread observation in the areas of economic and scientific interest [1]. The
preferential alignments in the Earth ranging from mineral orientations, grains, or microcracks to regional
fractures result in the seismic anisotropy. Crampin [2] reviewed the various studies related to the observation
of shear-wave splitting and confirmed that the anisotropy was present in almost all the rocks in the uppermost
half of the crust. The mechanical behaviour of composite materials is represented by anisotropic elasticity
[3,4]. In the last two decades, the applications of acoustic microscopy and fibre-reinforced composites have
initiated the interest in the wave propagation in layered anisotropic media [3]. Physics of granular media [5–7]
represents an active area of current research activity. Sound speeds in such media depend upon the stress-
induced anisotropy existing there. The propagation in anisotropic media has enormous applications in the
non-destructive evaluation of materials [8,9].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The work of Synge [10] is one of the early detailed study of elastic waves in anisotropic media. Musgrave
[11] presented a concise, elegant treatment of anisotropy with symmetry properties, based on algebraic
solutions. Since then, there have been a large number of studies discussing wave propagation in anisotropic
media. Almost all of the analytical studies, contain a few lines to convince the researchers that symmetry of
one kind or the other is prevalent in the sediments/crystals/composites. This helped to restrict the anisotropic
propagation to a fixed (symmetry or arbitrary) plane and hence to solve a 2-D (plane) problem. Symmetry
planes are a special case of general anisotropy. It is usually impossible to extrapolate from such a special case
of anisotropy to the general one.

The papers of Fryer and Frazer [12,13] are among the important analytical studies on general anisotropy.
They derived the analytical expressions of the eigensolutions for the anisotropic propagation with monoclinic
symmetry. Zilmer et al. [14,15] used perturbation theory of Frazer and Fryer [16] to approximate the reflection
coefficients for weak anisotropic media. The approximations made were not valid near critical angles, near
shear-wave singularities and when the anisotropy was too strong. Sharma [17] solved the Christoffel equation
to obtain analytical expressions for the phase velocities of all the quasi-waves in a general anisotropic medium.
This formulation also provided the analytical expressions for the directional derivatives of phase velocity. The
work presented use this formulation to study the true reflection in a general anisotropic elastic medium.
2. Definition of the problem

The problem is to study the wave propagation in a general anisotropic solid half-space and is explained as
follows. For the incidence of a quasi-wave, in a general anisotropic medium, with a given ray direction
(arbitrary in 3-D space), at the free surface,
(i)
 find the phase direction and hence phase velocity of the incident wave;

(ii)
 then, use Snell’s law to find the phase directions and phase velocities of all the three reflected

(homogeneous) quasi-waves;

(iii)
 using the phase directions and phase velocities of all the quasi-waves to calculate

(a) the group velocity and ray direction for each reflected wave;
(b) the energy partition among reflected waves at the surface.
3. Field equations for anisotropic propagation

The governing equations for an elastic media, in the absence of body forces, are

sij;j ¼ r €ui. (1)

The ui are the components of the average displacements for the solid particles. The dot notation is used to
denote time (partial) derivative. Summation convention is valid for repeated indices that can assume the values
1, 2 and 3. The comma ð; Þ before an index represents partial space differentiation. r is the density of the
medium. In an anisotropic elastic material, the constitutive equations for stresses (i.e., sij) are

sij ¼ cijkluk;l . (2)

The coefficients cijkl ð¼ cklij ¼ cjiklÞ are the 21 independent material constants for a most general anisotropic
material. To seek the harmonic solution of Eq. (1), for the propagation of plane waves, write

uj ¼ Sj exp {o
1

v
nkxk � t

� �� �
ðj ¼ 1; 2; 3Þ, (3)

where o is frequency. v is the phase velocity of wave, along the phase direction ðn1; n2; n3Þ, denoted by unit
vector N. Following Keith and Crampin [18], the Christoffel equation for an anisotropic medium is a system
of three homogeneous equations, given by

F ijSj ¼ 0 ði ¼ 1; 2; 3Þ, (4)
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where F ij ¼ cijklpkpl � rdij . dij is Kronecker delta. Non-trivial solution of this system explains the propagation
of three quasi-waves ðqP; qS1; qS2Þ in an anisotropic elastic medium. Analogous to the P and S waves in
elastic medium, the names qP and qS are chosen. These waves are identified with their velocities in decreasing
order, i.e., fastest among them is qP. qS1 and qS2 represent the splitting of shear waves in anisotropic
medium, where qS1 is the faster of the two split shear-waves [19]. These waves are called the quasi-waves
because their polarisations may not be along the dynamical axes (with propagation direction as one of the
coordinate axis). The analytical expressions for phase velocities ðvj; j ¼ 1; 2; 3Þ of these quasi-waves are derived
in Appendix A. The phase velocities depend upon the direction of phase propagation.

The eigenvectors of system (4), i.e., ðS1;S2;S3Þ, define the general polarisations of quasi-waves in the
anisotropic medium. These are expressed as follows:

S1

G1
¼

S2

G2
¼

S3

G3
(5)

for three sets of ðG1;G2;G3Þ, given by

ðiÞ G1 ¼ F22F 33 � F 23F32; G2 ¼ F 23F31 � F12F 33; G3 ¼ F21F 32 � F 13F22,

ðiiÞ G1 ¼ F13F 32 � F 12F33; G2 ¼ F 11F33 � F13F 31; G3 ¼ F12F 31 � F 11F32,

ðiiiÞ G1 ¼ F12F 23 � F 13F22; G2 ¼ F 13F21 � F11F 23; G3 ¼ F11F 22 � F 12F21. ð6Þ

Polarisations can be obtained from any of these three sets. Normalisation removes the extra degree of
freedom. These sets of expressions are not independent but all three are required to find the polarisations in
some situations, as explained in Fryer and Frazer [13].

4. Reflection

The analytical methods available in literature (e.g., Refs. [13,18]) to study anisotropic propagation, solve the
eigensystem of Christoffel equation for vertical slowness in a fixed plane. For general anisotropy, this method
requires to solve a polynomial of degree 6 to find the slowness values for all the waves propagating in an
anisotropic elastic solid. Out of these six values, the suitable three are selected to calculate the energy-fluxes of
the three quasi-waves. Such a selection may not be able to differentiate among qS1- and qS2-waves when their
velocities are nearly same (i.e., around shear-wave singularities). The energy-fluxes are used in finding the ray
directions of these waves. Fryer and Frazer [13] used this method to study the anisotropies with horizontal
plane of symmetry where the equation of order 6 is reduced to a cubic equation.

The present study proposes a new method, which is more exploring and transparent one. Only cubic
equation is required to be solved to calculate the velocities of three quasi-waves as functions of their
propagation direction. After this, the waves will be identified with their velocity functions and, hence, the
process of studying the reflected waves will be wave-specific. For each of the reflected waves, the group velocity
and ray direction are calculated without involving their energy flux. This method is explained as follows.
(i)
 Christoffel equation is solved analytically to find the phase velocities of all the quasi-waves in an
anisotropic elastic medium. The analytical expressions for phase velocity, derived in Sharma [17], enable
to find the directional derivatives of phase velocity and hence the group velocity and ray direction without
using any numerical method.
(ii)
 Phase velocity of a quasi-wave depends upon its phase direction. The phase direction of a reflected quasi-
wave is obtained from Snell’s law, which involves its phase velocity. This is a tricky situation. Here, the
analytical expression for phase velocity of the quasi-wave manages the way out. The Snell’s law and
velocity function of a reflected wave, together, provide a nonlinear function in polar angle (yj , in Fig. 1) of
the phase direction of the reflected wave. Bisection method (or Newton’s method) is used to find the real
root of this function. Existence of such a root defines the phase direction of the corresponding reflected
wave for the given phase direction of the incident wave. Such a (real) phase direction represents the
homogeneous reflected wave.
(iii)
 Phase direction from step (ii) is used to calculate the phase velocity of the reflected quasi-wave.
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Fig. 1. Geometry of the medium (rays represent phase directions).
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(iv)
 Phase direction from step (ii), phase velocity from step (iii) and analytical derivatives of phase velocity are
used to calculate the ray (energy) direction and group velocity of the quasi-wave.
4.1. Geometry of the medium

Consider a rectangular coordinate system ðx1; x2; x3Þ to represent a three-dimensional space. Let ðy;fÞ
denotes a general direction in the space, where y is inclination to the polar axis and f is azimuth to the x1-axis.
The half-space x3p0 is occupied by a general anisotropic elastic solid. The plane x3 ¼ 0 is the free surface of
this medium with its outward normal along x3-axis, as shown in Fig. 1. A quasi-wave travels through this
medium and become incident at a point on the surface. In a spherical coordinate system centred at this point,
let ðygfgÞ is the ray direction of this incident wave. Corresponding to this ray direction, let ðyI ;fI Þ is phase
direction of this quasi-wave, as shown in Fig. 1. The incident wave results in three quasi-waves ðqP; qS1; qS2Þ
reflected back into the anisotropic medium. Rays showing the reflected waves, in Fig. 1, represent the phase
directions ðyj ;fjÞ; ðj ¼ 1; 2; 3Þ, of the three quasi-waves.

4.2. Displacements

The displacement components in the anisotropic elastic medium are expressed as

uj ¼ S
ðIÞ
j exp {o

1

vI

n
ðIÞ
k xk � t

� �� �
þ
X3
m¼1

aðmÞS
ðmÞ
j exp {o

1

vm

n
ðmÞ
k xk � t

� �� �
, (7)

where ðn
ðmÞ
1 ; nðmÞ2 ; nðmÞ3 Þ ¼ ðsin ym cosfm; sin ym sinfm; cos ymÞ represents the phase direction of quasi-wave m.

The aðmÞ are relative excitation factors. The I ¼ 1; 2 or 3 for the incidence of qP, qS1 or qS2 wave,
respectively.
4.3. Boundary conditions

The boundary conditions represents the vanishing of stresses at the free surface. In this problem, the three
boundary conditions, required to be satisfied at the plane x3 ¼ 0, are

sk3 ¼ 0 ðk ¼ 1; 2; 3Þ. (8)
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Eqs. (2) relate s’s to displacement components ui. Satisfying the above boundary conditions yields a system of
three linear inhomogeneous equations in að1Þ; að2Þ and að3Þ. These equations are given by

X3
m¼1

J
ðmÞ
i

1

vm

aðmÞ ¼ �J
ðIÞ
i

1

vI

ði ¼ 1; 2; 3Þ, (9)

where, for cij defining the anisotropic elastic constants in two-suffix notation,

J
ðmÞ
i ¼

X3
k¼1

ðclkS
ðmÞ
k n

ðmÞ
k Þ þ cl4ðS

ðmÞ
2 n

ðmÞ
3 þ S

ðmÞ
3 n

ðmÞ
2 Þ þ cl5ðS

ðmÞ
1 n

ðmÞ
3 þ S

ðmÞ
3 n

ðmÞ
1 Þ

þ cl6ðS
ðmÞ
1 n

ðmÞ
2 þ S

ðmÞ
2 n

ðmÞ
1 Þ; l ¼ 6� i ði ¼ 1; 2; 3Þ. ð10Þ

4.4. Snell’s law

In order to solve the system of Eqs. (8) for aðmÞ; ðm ¼ 1; 2; 3Þ, the values of n
ðmÞ
j ; vm and ðvI Þ are required for

a given phase direction ðn
ðIÞ
1 ; n

ðIÞ
2 ; n

ðIÞ
3 Þ of the incident wave. The continuity in boundary conditions requires the

identical phase of all the waves at the surface x3 ¼ 0. The Snell’s law in three dimensions is, then, explained by

n
ðIÞ
i

vI

¼
n
ðmÞ
i

vm

ðm ¼ 1; 2; 3Þ; ði ¼ 1; 2Þ. (11)

This form of Snell’s law helps to deduce the following points:
(i)
 n2=n1 ¼ n
ðmÞ
2 =n

ðmÞ
1 ; ðm ¼ 1; 2; 3Þ, imply that fm ¼ fI . This means that phase directions of all the reflected

waves lie in the same vertical plane, which contains the phase direction of incident wave. Hence, in the
absence of azimuthal anisotropy, the velocity and direction of energy propagation will also confine to this
plane only. So, in an anisotropic medium with anisotropy up to azimuthal isotropy, the study of wave
propagation in a plane is sufficient to explain the reflection/refraction phenomenon. But, the presence of
azimuthal anisotropy demands that the wave propagation needs to be studied in three dimensions.
(ii)
 The phase velocity vm of the reflected quasi-wave m in anisotropic medium depends upon its phase
direction ðym;fmÞ. Using Snell’s law and the condition n

ðmÞ
k n

ðmÞ
k ¼ 1, an equation,

v2m sin2 yI � v2I sin
2 ym ¼ 0 (12)

is obtained which relates ym and v2m. An expression of v2m as a function of ym (Appendix A) enables to find
the value of ym, for any given value of yI . A numerical method (bisection method or Newton’s method) to
find the real root of a nonlinear equation is used. This real value of ym is, further, used to calculate the
(real) phase velocity vm and hence, velocity, direction and partition of energy.
(iii)
 It may be noted that polar angles ym; ðm ¼ 1; 2; 3Þ of quasi-waves are derived from the polar angle of
incident wave. A real angle of reflection defines the real phase direction N for the reflected wave. In
anisotropic medium, a wave with real phase direction will be a homogeneous wave. As the incident wave
reaches the critical angle for any of the reflected waves, the reflected wave propagates along the surface
with velocity vc ¼ vmðp=2;fI Þ. Such a critical angle is determined from the nonlinear equation

vc sin yI � vI ðyI ;fI Þ ¼ 0. (13)

This equation is solved for yI , with a given value of fI , numerically, for each of the reflected waves. A
valid root of this equation, say yc, divides the each incidence plane f ¼ fI into two parts. For incidence
beyond this angle the corresponding reflected waves becomes an inhomogeneous wave.
(iv)
 In (ii), there may be some angles of the incident wave for which the real ym does not exist for a reflected
wave. This implies that the concerned reflected wave is propagating as an inhomogeneous wave. The
vector representing its phase direction (i.e., N) will be a complex vector. The velocity (v) of the reflected
wave, corresponding to this complex vector, will also be complex. The propagation direction and
attenuation direction of this wave is then obtained from the specification [20] of its complex slowness
vector ðN=vÞ. The energy-flux of the inhomogeneous waves is horizontal and, hence, travels along the
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surface/interface [10]. Hence, the suggested procedure calculates the group velocity and ray direction of
the reflected wave until it is a homogeneous wave. So, the reflection process may be studied for the
incidence that results all the reflected waves as homogeneous.
4.5. Energy ratios

Distribution of energy between different reflected homogeneous waves is considered across a surface
element of unit area at the plane x3 ¼ 0. Following Achenbach [21], the scalar product of surface traction and
particle velocity per unit area, denoted by P�, represents the rate at which the energy is communicated per unit
area of the surface. The time average of P� over a period, denoted by hP�i, represents the average energy
transmission per unit surface area per unit time. At incidence beyond the critical angle for a refracted wave,
the waves become inhomogeneous and hence involves the concept of interaction energy. Borcherdt [22]
explained the existence of interaction energy for the reflection and refraction of SH waves. A matrix of energy
ratios, defined by Ejk ¼ hP

�
jki=hP

�
II i; ðj; k ¼ I ; 1; 2; 3Þ, may be able to calculate the interaction energy among

the quasi-waves present in the anisotropic medium. x3-axis being the outer normal to the surface, the hP�jki
representing the average energy fluxes, are given by

hP�jki ¼ �0:5o
2 1

vj

Re
X3
i¼1

J
ðjÞ
i aðjÞS̄

ðkÞ

i āðkÞ

( )
. (14)

The sum of all the non-diagonal entries of this energy matrix gives the interaction energy ratio for the
reflection. At incidence yielding only the reflected homogeneous waves, this energy matrix is a skew symmetric
one. Hence, the interaction energy vanishes. The diagonal entries of the matrix represent the energy share of
reflected quasi-waves. The conservation of energy is given by the relation

P3
j¼1ð
P3

k¼1Ejk þ EjI Þ ¼ �EII ¼ �1.

5. Group velocity

Energy propagation in anisotropic media is, in fact, a three-dimensional phenomenon. Study of
propagation in one plane (particularly a symmetry plane) may give no indication of its behaviour in
neighbouring directions. In an anisotropic medium, energy associated with a quasi-wave travels with the
group velocity along a ray at an angle to its direction of phase propagation. In a spherical coordinate system,
let vðy;fÞ define the phase velocity of a quasi-wave in the vertical plane ðf ¼ fI Þ along the phase direction
which is making an angle y with the polar axis. Following Ben-Menahem and Sena [23], the components of
group velocity i.e., wj ; ðj ¼ 1; 2; 3Þ, are expressed as follows:

w1=v ¼ cosf sin yþ cosf cos yTy �
sinf
sin y

Tf,

w2=v ¼ sinf sin yþ sinf cos yTy þ
cosf
sin y

Tf,

w3=v ¼ cos y� sin yTy. (15)

The magnitude of the group velocity is

w ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2

y þ
1

sin2y
T2

f

r
(16)

and the ray direction, ðyg;fgÞ, is obtained from its components. Ty and Tf in Eqs. (15)–(16), are defined by

Tk ¼
1

v
ðvÞ;k ¼

1

2h
ðhÞ;k ðk ¼ y;fÞ. (17)

The partial derivatives of hð¼ v2Þ are derived, analytically, in Appendix A.
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6. Numerical computation and discussion

The purpose of numerical computation is to study the characteristics of the reflected homogeneous waves
resulting from the incidence of each of the three quasi-waves at the free surface of the medium. This includes the
computation of the group velocity and ray direction of the reflected waves along with the share of three
reflected waves in the energy reflected back into the medium. For this purpose, numerical model of a real crystal
rock may be more suitable. Therefore, Dolomite reservoir rock is chosen for the anisotropic medium. The
elastic constants for this solid are obtained from Rasolofosaon and Zinszner [24]. These are (in GPa) as follows:

c11 ¼ 65:53 c12 ¼ 9:77 c13 ¼ 12:19 c14 ¼ 0:18 c15 ¼ �0:81 c16 ¼ 2:94,

c22 ¼ 50:77 c23 ¼ 11:61 c24 ¼ �0:09 c25 ¼ �0:50 c26 ¼ �0:19,

c33 ¼ 60:11 c34 ¼ �1:61 c35 ¼ 1:78 c36 ¼ 0:84 c44 ¼ 23:51,

c45 ¼ 1:49 c46 ¼ �1:17 c55 ¼ 24:57 c56 ¼ 0:26 c66 ¼ 20:21.

The density ðrÞ of the rock is 2423 kg=m3. The ray direction, ðyg;fgÞ, of the incident wave varies from ð0; 0Þ to
ð90�; 90�Þ. Using these numerical values, the variations in the (group) velocities and (ray) directions of the
reflected waves with the ray direction of the incident wave, are calculated. The incidence of each of the qP, qS1
and qS2 waves is considered. The variations of energy ratios of reflected waves are, also, calculated. These
variations are plotted in Figs. 2–8. Details are as follows.

The variations in the group velocities and ray directions of reflected waves from the incidence of qP wave
are plotted in Fig. 2. Group velocities vary both with the polar angle and azimuth of the ray direction of
incident wave. Variations are nearly uniform, in general. For the incidence of qP wave, all the reflected waves
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Fig. 2. Variations of group velocities (km/s) and ray directions of reflected homogeneous waves with the ray direction ðyg;fgÞ of incident

qP wave (all angles in degrees).
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are homogeneous. This implies that the incidence of qP waves does not reflect inhomogeneous waves. The
velocities of reflected waves decrease with the increase of yg and fg, both, of the incident wave. These velocity
variations of three reflected waves with the ray directions of incident wave are up to 10%. Variations are larger
with azimuth in comparison to with polar angle. The polar angle of reflected qP wave is nearly follows the
reflection rule of the isotropic medium, i.e., yg of reflected qP wave ¼ p� yg of incident qP wave. However,
the azimuth of the reflected qP wave is quite different from the incident qP wave, except, near grazing
incidence. This implies that the reflected energy is not confined to the vertical plane of incident wave. The ray
directions of the reflected qS1 and qS2 waves are also different from the incident direction, as expected. The
polar angles of reflected qS1 and qS2 waves may be up to p=4 away from reflected qP wave.

Fig. 3 contains the variations in the group velocities and ray directions of reflected waves for the incidence
of qS1 wave. The reflected qP wave become inhomogeneous for incidence beyond, a critical value of yg, which
varies with the value of fg. For incidence beyond these angles, the group velocities and ray direction of other
two reflected waves changes rapidly with the directions of incident wave. Otherwise, these variations are nearly
uniform. The ray directions of the three reflected waves are quite near to each other.

The variations of group velocities and ray directions of reflected waves from the incidence of qS2 wave are
exhibited in Fig. 4. The variation patterns are quite similar to Fig. 2, except that the critical directions appear a
bit early in this case. The similarity in the behaviour in Figs. 2 and 3 may imply that the propagation
characteristics of qS1 and qS2 waves in the medium chosen are, very nearly, same to each other. The other
difference is the second critical directions, incidence beyond which changes the reflected qS1 wave into an
inhomogeneous wave.

In the above two figures, it is observed that the numerical values of critical directions after which the
reflected ðqP; qS1Þ waves become inhomogeneous are important. Fig. 5, exhibits these critical directions for
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Fig. 3. Same as Fig. 2, but for incident qS1 wave.
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Fig. 4. Same as Fig. 2, but for incident qS2 wave.
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the incidence of qS1 and qS2 waves. The plots in the figure at top shows the variations of the phase critical
angle ðycÞ with the phase propagation plane ðf ¼ fI Þ of the incident wave. The figure below shows the
variations of ray critical angle ðyg

cÞ with the ray propagation plane (fg ¼ fg
I ) of incident wave. Ray critical

angles are little higher than phase critical angles. Triplication in one of the curve is the feature of wave surface
of reflected qS1 wave [19]. For the corresponding reflected wave, these (directions) curves divide the planes
(quadrants) of incidence into two parts, one for homogeneous reflected wave and other (near to the free plane
surface) for inhomogeneous reflected wave.

Fig. 6 exhibits the variations of energy ratios of the reflected qP, qS1 and qS2 waves, with the ray direction
of incident qP wave. All reflected waves are homogeneous, hence, no interaction energy for the incidence of qP

wave. Change of the (vertical) plane of incidence ðyg ¼ constantÞ has little effect on the reflected qP wave but
have significant effect on the reflected qS1 and qS2 waves. In general, the variations in the partition of
reflected energy with the ray direction of incident qP wave are uniform. While going across normal to grazing
incidence, the energy of reflected qP wave decreases whereas the energies of reflected qS1 and qs2 waves
increase.

Fig. 7 shows the variations in partition of reflected energy with the ray direction of the incident qS1 wave.
The direction of incidence resulting in all homogeneous reflected waves are considered. Share of qS2 wave in
reflected energy is smaller as compared to two other waves. The abrupt edges of the surface plots (near critical
directions) are due to the step-size of yI , chosen for numerical computation. The corresponding variations, for
the incident qS2 waves, are presented in Fig. 8. The homogeneous reflected waves are obtained for a smaller
incident region as compared to incident qS1 wave. For incidence in this region, the energy partition changes
more steadily as compared to the incidence of other waves. In the reflected energy, the reflected qS1 wave has a
smaller share as compared to qP and qS2 waves.
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7. Conclusions

The numerical results, discussed above, are obtained for the numerical model of a particular rock. Any
conclusion drawn from the discussion of these results may not qualify for generalisation but computation
success does certify the applicability of the technique studied in this work. Few of the results drawn from the
study may be expressed as follows:
(i)
 However, the phase directions of all the reflected waves lies in the incident plane but the reflected energies
are not confined to a single plane. This demands that, in an anisotropic medium, the wave propagation
should not be explained in two dimensions.
(ii)
 The velocities and directions of reflected waves varies considerably with the direction of incident plane.
This implies that the study of reflection in any fixed plane may not be able to explain the propagation
behaviour in the nearby plane.
(iii)
 The critical angle varies with the azimuth of incident wave. This implies that for incidence at a particular
angle, near critical angle, a reflected wave may be homogenous or inhomogeneous depending upon the
incident plane chosen.
This work presented studies the anisotropic reflection process in a true sense. The procedure introduced is a
generalised analogy of that used for propagation in isotropic elastic medium. The transparent analytical
expressions creates space for further research in the topic that includes the waves reflected as inhomogeneous
waves. The procedures introduced may be used to study the problems of anisotropic scattering in an elastic
medium. The researchers in this field would prefer to use the analytical expressions derived in this work. The
variations of critical angles with the orientation of sagittal plane may be used as a diagnostic tool to recognise
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and estimate anisotropy. It may help in improving the models used by exploration and NDE people in the
interpretation of their complex data.

Appendix A

A.1. Phase velocities

Consider a general anisotropic medium represented by the elastic constants in two-suffix notation, cij.
Define a row matrix N ¼ ðnx; ny; nzÞ, where nj denotes the components of a unit vector normal to wave surface
and, hence, it represents the direction of phase propagation. Following Sharma [17], define:

a ¼ NAN 0; b ¼ NBN 0; g ¼ NCN 0,

d ¼ NDN 0; Z ¼ NEN 0; z ¼ NFN 0, (18)

where N 0 is the transpose of N. A;B;C;D;E and F, the square matrices of order 3, are defined as follows:

A ¼ fa11; a16; a15; a16; a66; a56; a15; a56; a55g; B ¼ fa66; a26; a46; a26; a22; a24; a46; a24; a44g,

C ¼ fa55; a45; a35; a45; a44; a34; a35; a34; a33g; D ¼ fa16; a12; a14; a66; a26; a46; a56; a25; a45g,

E ¼ fa15; a14; a13; a56; a46; a36; a55; a45; a35g; F ¼ fa56; a46; a36; a25; a24; a23; a45; a44; a34g,

where aij ¼ cij=r. r is the density of the medium. The eigenvalue problem for the medium is represented by

v6 þ 3av4 þ 3bv2 þ c ¼ 0, (19)
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where

a ¼ �1
3
ðaþ bþ gÞ,

b ¼ 1
3
ðabþ agþ bg� d2 � Z2 � z2Þ,

c ¼ az2 þ gd2 þ bZ2 � abg� 2Zdz. (20)

The real roots of Eq. (18), which is cubic in V 2, are written as

v2m ¼ 2
ffiffiffiffiffiffiffiffiffi
�H
p

cos
c� 2pðm� 1Þ

3

� �
� a ðm ¼ 1; 2; 3Þ, (21)

where c ¼ tan�1ðD=GÞ, D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðG2 þH3Þ

p
; H ¼ b� a2; and G ¼ ð3ab� c� 2a3Þ=2. vm; ðm ¼ 1; 2; 3Þ, define

the magnitudes of phase velocities of three quasi-waves in the direction of unit vector N. These waves,
represented by m ¼ 1; 2 and 3, are called the qP, qS1 and qS2 waves, respectively. qS1 is the faster of the two
split shear-waves qS1 and qS2 [19].

A.2. Phase direction from ray direction

The purpose is to find phase direction, i.e., ðy;fÞ, for a given ray direction ðyg;fgÞ. This is possible only after
reducing the relations (14) to a system of two nonlinear simultaneous equations. Such a system of equations is
given by

sinfg f 1 � cosfg f 2 ¼ 0

and

sin yg f 3 � cos yg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
1 þ f 2

2

q
¼ 0, (22)

where f 1 ¼ cosf sin yþ cosf cos yTy �
sinf
sin y Tf, f 2 ¼ sinf sin yþ sinf cos yTy þ

cosf
sin y Tf; and f 3 ¼ cos y�

sin yTy.
Newton’s method for two variables is applied to solve this system numerically for y and f. The partial

derivatives of functions f j , for j ¼ 1; 2; 3, with respect to y and f can be evaluated using the following
relations:

h ¼ v2; Tj ¼
h;j

2h
ðj ¼ y;fÞ; Tj;k ¼

h;jk

2h
� 2TjTk ðj; k ¼ y;fÞ,

h;j ¼ �ð3a;jh
2
þ 3b;jhþ c;jÞ=ð3h2

þ 6ahþ 3bÞ,

h; jk ¼ �
6ðhþ aÞh;jh;k þ 3ð2a;khþ b;kÞh;j þ 3ð2a;jhþ b;jÞh;k þ 3a;jkh2

þ 3b;jkhþ c;jk

3h2
þ 6ahþ 3b

. (23)

The derivatives of a, b and c can be derived from the relations (19). The phase direction can be calculated from
a given ray direction but with following exceptions:
(i)
 Singularities are the phase directions along which the phase velocities of qS1 wave and qS2 wave approach
each other. Near a singularity the directional derivatives of phase velocity change rapidly and the direction
of local extremum represents the singularity. The existence of local extremum at the singularity in the root
search region fails the Newton’s method. This may be avoided by the slight shift of initial root.
(ii)
 For an assumed ray direction, there may be more than one phase direction possible and these may be
quite near to each other. This defines the triplications or cusps in the wave fronts of qS1 and
qS2-waves [25].



ARTICLE IN PRESS
M.D. Sharma / Journal of Sound and Vibration 302 (2007) 629–642642
References
[1] S. Crampin, Geological and industrial implications of extensive-dilatancy anisotropy, Nature 328 (1987) 491–496.

[2] S. Crampin, The fracture criticality of crustal rocks, Geophysical Journal International 118 (1994) 428–438.

[3] A.M.B. Braga, Wave Propagation in Anisotropic Layered Composites, PhD Dissertation, Stanford University, Stanford, CA, 1990.

[4] C.W. Fan, C. Hwu, Rigid stamp indentation on a curvilinear hole boundary of an anisotropic elastic body, ASME, Journal of Applied

Mechanics 65 (1998) 389–397.

[5] A. Mehta (Ed.). Granular Media: An Interdisciplinary Approach, Springer, New York, 1991.

[6] S.R. Nagel, Instabilities in sand pile, Reviews of Modern Physics 64 (1992) 821–825.

[7] A.N. Norris, D.L. Johnson, Nonlinear elasticity of Granular media, ASME, Journal of Applied Mechanics 64 (1997) 39–43.

[8] J.-F. Chai, T.-T. Wu, Determinations of anisotropic elastic constants using laser-generated surface waves, Journal of the Acoustic

Society of America 95 (1994) 3232–3241.

[9] T.-T. Wu, T.-Y. Wu, Surface waves in coated anisotropic medium loaded with viscous fluid, ASME, Journal of Applied Mechanics 67

(2000) 262–266.

[10] J.L. Synge, Elastic waves in anisotropic media, Journal of Mathematical Physics 35 (1957) 323–334.

[11] M.J.P. Musgrave, Crystal Acoustics, Holden-Day, San Francisco, 1970.

[12] G.J. Fryer, L.N. Frazer, Seismic waves in stratified anisotropic media, Geophysical Journal of the Royal Astronomical Society 78

(1984) 691–710.

[13] G.J. Fryer, L.N. Frazer, Seismic waves in stratified anisotropic media-II. Elastodynamic eigensolutions for some anisotropic systems,

Geophysical Journal of the Royal Astronomical Society 91 (1987) 73–101.

[14] M.D. Zilmer, D. Gajewski, B.M. Kashtan, Reflection coefficients for weak anisotropic media, Geophysical Journal International 132

(1997) 159–166.

[15] M.D. Zilmer, D. Gajewski, B.M. Kashtan, Anisotropic reflection coefficients for a weak contrast interface, Geophysical Journal

International 129 (1998) 389–398.

[16] L.N. Frazer, G.J. Fryer, Useful properties of the system matrix for a homogeneous visco-elastic solid, Geophysical Journal

International 97 (1989) 173–177.

[17] M.D. Sharma, Group velocity along general direction in a general anisotropic medium, International Journal of Solids and Structures

39 (2002) 3277–3288.

[18] C.M. Keith, S. Crampin, Seismic waves in anisotropic media: reflection and refraction at a plane interface, Geophysical Journal of the

Royal Astronomical Society 49 (1977) 181–208.

[19] S. Crampin, A review of wave motion in anisotropic and cracked elastic media, Wave Motion 3 (1981) 343–391.

[20] V. Cereveny, I. Psencik, Plane waves in viscoelastic anisotropic media, Geophysical Journal International 161 (2005) 197–212.

[21] J.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland Publications, Amsterdam, 1973.

[22] R.D. Borcherdt, Reflection and refraction of type-II S waves in elastic and inelastic media, Bulletin of the Seismological Society of

America 67 (1977) 43–67.

[23] A. Ben-Menahem, A.G. Sena, Seismic source theory in stratified anisotropic media, Journal of Geophysical Research 95 (1990)

15395–15427.

[24] P.N.J. Rasolofosaon, B.E. Zinszner, Comparison between permeability anisotropy and elasticity anisotropy of reservoir rocks,

Geophysics 67 (2002) 230–240.

[25] S. Crampin, M. Yedlin, Shear-wave singularities of wave propagation in anisotropic media, Journal of Geophysics 49 (1981) 43–46.


	Propagation of elastic energy in a general anisotropic medium
	Introduction
	Definition of the problem
	Field equations for anisotropic propagation
	Reflection
	Geometry of the medium
	Displacements
	Boundary conditions
	Snell’s law
	Energy ratios

	Group velocity
	Numerical computation and discussion
	Conclusions
	Phase velocities
	Phase direction from ray direction

	References


